[Li-O 1.943-1.961 (2) \AA] (Klapper \& Küppers, 1973) both of which show Li tetrahedrally coordinated to four O atoms. Five-coordinate Li has been observed in lithium antamanide (Karle, 1974) with four carbonyl O atoms and a $\mathrm{CH}_{3} \mathrm{CN} \mathrm{N}$ atom ligating $\mathrm{Li}^{+}(\mathrm{Li}-\mathrm{O}$ $2.21 \AA$). The cryptate (211) offers six coordination sites to the encapsulated Li^{+}ion with four O and two N sites [Li-O 2.081 (6)-2.173 (24) \AA] in distorted octahedral array (Moras \& Weiss, 1973). Thus Li-O distances increase with increasing coordination number.

The five-coordinate structures $\mathrm{Li}(1,5,9,13$-tetraoxacyclohexadecane)SCN (Groth, 1981a) (III) and $\mathrm{Li}(1,4,7,10-$ tetraoxacyclododecane) SCN (Groth, 1981b) (IV), where the four $\mathrm{Li}-\mathrm{O}_{\text {crown }}$ distances average $2.07-2.09 \AA$ in (III) and 2.057 (10) \AA in (IV) (the fifth ligand in each is N), provide better comparison to the title structure.

Bond angles and distances within the crown-ether ring appear normal. The single ethylene ($\mathrm{O}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{O}$) group is dimethyl substituted and thus shorter [C-C 1.47 (2) \AA]. $\mathrm{C}-\mathrm{O}$ distances of the type $\mathrm{O}-\mathrm{CH}_{2}$ $[1.41$ (2) \AA] are comparable to the 1.43 (1) \AA observed in (III) and (IV). $\mathrm{C}-\mathrm{C}$ distances in $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ linkages $[1.51$ (2) \AA] are similar to the 1.51 (1) \AA observed in (IV).

The chirality of (II) as indicated by better refinement in the R, R modification is exactly as expected considering the starting material and synthetic technique (Malpass, Palmer \& Ghirardelli, 1980). Other spectroscopic evidence has also been given which supports the conclusion that strong ion-pair bonding between the crown-complexed Li^{+}ion and NO_{3}^{-}persists in solution as long as the polarity and donicity of the solvent are low. For example, the $\mathrm{NO}_{3}^{-} n-\pi^{*} \mathrm{CD}$ is annulled in solutions of $\mathrm{Li}\left(6,7\right.$-dimethylbenzo-14-crown-4) NO_{3} in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, a polar, anion-solvating solvent; whereas the CD in $\mathrm{CH}_{3} \mathrm{CN}$ is almost as great as it is in CHCl_{3}, a reflection of the rather modest donicity of acetonitrile (Gurman, 1968).

Similar solution CD evidence of strong metal-nitrate ion pairing in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$ and other low-donicity solvents and solvent mixtures for LiNO_{3}, $\mathrm{NaNO}_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ and other metal nitrates complexed with 6,7-dimethylbenzo-14-crown-4 and its hydrogenated analog, as well as with chiral 12-crown-4, 15 -crown- 5 and 18 -crown- 6 rings has been observed. A more extensive description of this work is in preparation (Malpass \& Palmer, 1984) and further structural studies are in progress (Holt, 1984).

References

Carter, R. L. (1976). Infrared and Raman Spectroscopy. Part A, edited by E. G. Brame \& J. G. Grasell. New York: Marcel Dekker.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Groth, P. (1981a). Acta Chem. Scand. Ser. A, 35, 460-462.
Groth, P. (1981b). Acta Chem. Scand. Ser. A, 35, 463-465.
Gurman, V. (1968). Coordination Chemistry in Non-Aqueous Solutions. Berlin: Springer-Verlag:
Holt, E. M. (1984). In preparation.
Holt, E. M., Malpass, G. D., Ghirardelli, R. G., Palmer, R. A. \& Rubin, B. (1984). Acta Cryst. C40, 394-396.

Karle, I. (1974). J. Am. Chem. Soc. 6, 4000-4008.
Klapper, H. \& Küppers, H. (1973). Acta Cryst. B29, 21-26.
Liotta, C. L. (1980). Private communication.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, l., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Malpass, G. D. Jr (1980). PhD dissertation, Duke Univ.
MALPASS, G. D. JR \& PALMER, R. A. (1984). In preparation.
Malpass, G. D. Jr, Palmer, R. A. \& Ghirardelli, R. G. (1980). Tetrahedron Lett. 21(16), 1489-1492.
Meulemans, R., Piret, P. \& Van Meerssche, M. (1971). Bull. Soc. Chim. Belg. 80, 73-81.
Moras, D. \& Weiss, R. (1973). Acta Cryst. B29, 400-403.
Smid, J. (1972). Ions and Ion Pairs in Organic Reactions. Vol. I, edited by M. Swarc. New York: Wiley-Interscience.
Stewart, J. M. (1978). The XRAY system - version of 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1984). C40, 398-401

Structure and Absolute Configuration of (-$)_{589}$ [2-(Methylthio)propionato-S,O]Itris(2aminoethyl)amine]cobalt(III) Diperchlorate, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$

By S. Ohba and Y. Saito
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

(Received 19 August 1983; accepted 11 November 1983)

[^0]atoms of $\mathrm{CH}_{3} \mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}$, where the S atom is trans with respect to the tertiary N atom of tren. The absolute configuration around the ligating S and the asymmetric C atom has been determined to be S and R, respectively.

Introduction. Generally, the rate of racemization of a $\mathrm{Co}^{\mathrm{III}}$ complex at the coordinated thioether sulfur is so fast that it is impossible to isolate the complex with a chiral S atom. The inversion at the S atom is, however, hindered for the title complex by the steric interaction between two methyl groups attached to S and the adjacent C atoms. The chirality of the S atom is reflected in the circular dichroism (CD) spectra in the $\mathrm{Co}^{\mathrm{III}}-\mathrm{S}$ charge-transfer (CT) region (Kojima \& Fujita, 1983). The crystal structure analysis has been undertaken to establish the relation between the CD spectra and the absolute configuration of the coordinated thioether S atom.

Experimental. Separation by column chromatography showed that only one of the geometrical isomers of the $\left[\mathrm{Co}\left\{\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}\right\}(\text { tren })\right]^{+}$complex was yielded by the reaction of cis- $\left[\mathrm{CoCl}_{2}(\text { tren })\right]^{+}$with racemic $\mathrm{HSCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$. The title compound $\left[\mathrm{Co}\left\{\mathrm{CH}_{3} \mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}\right\}(\text { tren })\right]^{2+}$ was prepared by methylation of the optically active thiolato complex (Kojima \& Fujita, 1983). Crystals obtained from an

Table 1. Positional parameters ($\times 10^{4} ;$ for Co, S and Cl $\times 10^{5}$) and equivalent isotropic temperature factors (Hamilton, 1959)

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Co	17094 (5)	22927 (4)	84818 (6)	1.8
S	6566 (10)	15580 (8)	98498 (12)	$2 \cdot 5$
O(1)	2936 (3)	2284 (2)	9656 (3)	2.5
O(2)	3690 (3)	1820 (3)	11378 (4)	$3 \cdot 1$
N(1)	2651 (4)	3009 (3)	7401 (4)	$2 \cdot 5$
N(2)	2506 (4)	1309 (3)	7729 (4)	2.6
$\mathrm{N}(3)$	475 (4)	2326 (3)	7260 (4)	2.7
N(4)	1181 (4)	3372 (3)	9211 (4)	2.5
C(1)	1556 (6)	969 (4)	12018 (6)	3.8
C(2)	1909 (5)	1185 (3)	10740 (5)	2.6
C(3)	2905 (4)	1818 (3)	10615 (4)	$2 \cdot 2$
C(4)	103 (6)	550 (5)	9235 (6)	4.4
C(5)	3750 (5)	2512 (3)	7150 (6)	$3 \cdot 2$
C(6)	3420 (6)	1612 (4)	6841 (6)	4.3
C(7)	1984 (5)	3190 (5)	6249 (5)	$4 \cdot 1$
C(8)	669 (6)	3083 (5)	6456 (6)	4.4
C(9)	2934 (5)	3811 (3)	8090 (6)	3.4
C(10)	1797 (6)	4133 (3)	8663 (6)	3.7
$\mathrm{Cl}(1)$	6832 (15)	4700 (9)	50524 (12)	3.5
O(11)	605 (4)	302 (3)	6330 (4)	4.7
$\mathrm{O}(12)$	1858 (7)	686 (8)	4790 (7)	14.1
O(13)	-67 (10)	1042 (8)	4702 (8)	21.3
O (14)	632 (6)	-317 (4)	4447 (5)	8.0
$\mathrm{Cl}(2)$	19749 (13)	36618 (10)	26938 (14)	3.6
O(21)	1279 (4)	3099 (3)	1955 (5)	5.2
O(22)	1278 (4)	4140 (3)	3531 (5)	5.1
O(23)	2526 (7)	4252 (4)	1862 (7)	10.4
O(24)	2855 (6)	3204 (5)	3299 (6)	9.5

aqueous solution of pH ca 2 at 277 K were kindly supplied by Professor J. Fujita, Nagoya University, in the form of orange-red prisms, grown along a. Crystal $0.3 \times 0.5 \times 0.55 \mathrm{~mm}$, Rigaku AFC-5 four-circle diffractometer, graphite monochromator, Laue group mmm , cell parameters refined by least-squares methods on the basis of 202θ values, $30<2 \theta<37^{\circ}$, intensity measurement performed to $2 \theta=55^{\circ}(+h,+k,+l$ set $)$, $\theta-2 \theta$ scan, scan speed $2^{\circ} \min ^{-1}(\theta)$; mean ratio of structure factors of the five standard reflections was $0.98<\sum\left(\left|F_{o}\right| /\left|F_{o}\right|_{\text {initial }}\right) / 5 \leq 1.00 ; \quad$ space group $P 2,22_{1}$ determined from systematic absences $h 00, h$ odd, $0 k 0, k$ odd, $00 l, l$ odd; 2585 reflections measured, 2310 observed unique reflections with $\left.\left|F_{o}\right|\right\rangle$ $3 \sigma\left(\left|F_{o}\right|\right)$; corrections for Lorentz-polarization and for absorption $\left[1.20<\left(A^{*}\right)^{1 / 2}<1.37\right]$; structure solved by Patterson-Fourier methods, refined by block-diagonal least squares with anisotropic thermal parameters for all non- H atoms; 22 among 25 H atoms found on difference density maps and others calculated, H atoms included in refinement with isotropic thermal parameters; $\quad \sum w\left|\left|F_{o}\right|-\left|F_{c}\right|^{2} \quad\right.$ minimized, $w^{-1}=\sigma^{2}\left(\left|F_{o}\right|\right)+\left(0.015\left|F_{o}\right|\right)^{2}$; final $R=0.042, w R$ $=0.054, S=2.5$ for 2310 unique reflections; \dagger reflection/parameter ratio was $7 \cdot 1$; all shifts in final cycle of refinement $<\sigma$ for non- H atoms and 2σ for H atoms; the max. and min. $\Delta \rho$ excursions in final difference density maps 1.0 and $-0.6 \mathrm{e} \AA^{-3}$, respectively; complex neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); computation program system UNICSIII (Sakurai \& Kobayashi, 1979); final atomic parameters are presented in Table 1.

The absolute structure was determined by an anomalous-scattering technique. The intensities of the $+h,-k,+l$ set were also measured to a 2θ value of 40° and 957 reflections were observed above the threshold. The observed and calculated intensity differences, $\Delta|F|$ $[=|F(h k l)|-|F(h \bar{k} l)|]$ for which $\left|F_{o}(h k l)\right|$ and $\left|F_{o}(h \bar{k} \eta)\right|$ differed by more than 15% and more than 3.0 in magnitude, are compared in Table 2. The concordance of the signs of $\Delta|F|_{\text {obs }}$ and $\Delta|F|_{\text {calc }}$ indicates that the absolute crystal structure listed in Table 1 is correct. In order to confirm the absolute configuration, a refinement was made separately with the enantiomeric structure. It converged to $R=0.050$ and $w R=0.064$ for 2310 unique reflections and could be rejected at the 0.005 significance level by the Hamilton (1965) test.

[^1]Table 2. Determination of the absolute configuration

			$\|F(h k l)\|-\|F(h \bar{k} l)\|$	
h	k	l	obs.	calc.
5	1	1	5.1	4.2
8	1	3	-3.1	-3.2
4	2	7	3.7	3.4
10	2	3	-4.3	-3.7
4	7	1	-3.5	-2.6
7	7	6	-3.9	-2.6
4	8	2	3.4	1.0

Discussion. There are two possible geometrical isomers for the title complex, the t and p isomers, where the S atom of 2-(methylthio)propionato is trans with respect to the tertiary or a primary N atom, respectively. The complex cation is a t isomer as shown in Fig. 1. The absolute configuration around the S and $\mathrm{C}(2)$ atoms are S and R, respectively. The present complex shows a positive CD peak at ca $34000 \mathrm{~cm}^{-1}$ (Kojima \& Fujita, 1983). Thus, the absolute configuration of the ligating sulfide S atom is expected to be S when a positive CD peak is observed in the $\mathrm{Co}^{\mathrm{III}}-S$ CT region.

The five-membered chelate ring formed by 2 (methylthio)propionato has an envelope conformation as shown in Fig. 2. The $\mathrm{C}(2)$ and $\mathrm{C}(3)$ atoms deviate from the plane defined by Co, S and $\mathrm{O}(1)$ by 0.616 (6) and 0.212 (7) \AA, respectively. The torsion angle $\mathrm{C}(1)-$ $\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(4)$ which involves two methyl groups is $-89.6(4)^{\circ}$. Bond lengths and angles are listed in Table 3. $\mathrm{S}-\mathrm{Co}-\mathrm{N}(2)$ of $97.7(1)^{\circ}$ is larger than $\mathrm{S}-\mathrm{Co}-\mathrm{N}(4)$ [$89.8(1)^{\circ}$], suggesting a steric interaction between the methyl group $\mathrm{C}(4)$ and the $\mathrm{N}(2)$ atom. $\mathrm{Co}-\mathrm{N}$ bond lengths of tren show no significant difference from each other. The coordinated thioether S atom, which has a formal neutral charge, does not appear to exert a structural trans effect in accordance with the reported experimental results (Elder, Kennard, Payne \& Deutsch, 1978). The $\mathrm{Co}-\mathrm{S}$ bond distance of $2 \cdot 239$ (1) \AA is significantly shorter than the values of 2.252-2.274 \AA for other thioether complexes (Elder et al., 1978; Isago, Okamoto, Ohmasa \& Hidaka, 1980). It may be a structural trans effect of the tren ligand that the bond between Co and the atom trans with respect to the tertiary N atom is shortened. Such a trans effect of tren was also recognized in $[\mathrm{Co}(\mathrm{gly})(\text { (tren })]^{2+}$ (Mitsui, Watanabe, Harada, Sakamaki \& Iitaka, 1976).
The thermal parameters for the perchlorate O atoms are high. It may be a result of structural disorder. $\mathrm{Cl}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles are in the range from 1.29 (1) to 1.44 (1) \AA and from 98.6 (6) to 115.7 (6) ${ }^{\circ}$, respectively.*

The authors are grateful to Professor J. Fujita, Nagoya University, for supplying the crystal specimen. The calculations were carried out on the FACOM $\mathrm{M}-160 \mathrm{~F}$ and $\mathrm{M}-360 \mathrm{~F}$ computers of The Institute for Solid State Physics, The University of Tokyo.

[^2]

Fig. 1. An ORTEP drawing of the complex cation with thermal ellipsoids scaled at the 50% probability level (Johnson, 1965). H atoms are represented by circles of radius $0.08 \AA$.

Fig. 2. The $\mathrm{S}-\mathrm{O}$ ligand viewed along the line through the Co atom and the midpoint of the $\mathrm{S}-\mathrm{O}(1)$ axis.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Co-S	2.239 (1)	$\mathrm{N}(1)-\mathrm{C}(7)$	1.507 (7)
$\mathrm{Co}-\mathrm{O}(1)$	1.902 (3)	$\mathrm{N}(1)-\mathrm{C}(9)$	1.496 (7)
$\mathrm{Co}-\mathrm{N}(1)$	1.951 (5)	N(2)-C(6)	1.503 (8)
$\mathrm{Co}-\mathrm{N}(2)$	1.962 (5)	N(3)-C(8)	1.491 (9)
$\mathrm{Co}-\mathrm{N}(3)$	1.946 (5)	$\mathrm{N}(4)-\mathrm{C}(10)$	1.502 (7)
$\mathrm{Co}-\mathrm{N}(4)$	1.956 (5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.505 (9)
S-C(2)	1.823 (6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.505 (7)
$\mathrm{S}-\mathrm{C}(4)$	1.820 (8)	C(5)-C(6)	1.489 (8)
$\mathrm{O}(1)-\mathrm{C}(3)$	1.284 (6)	C(7)-C(8)	1.519 (9)
$\mathrm{O}(2)-\mathrm{C}(3)$	1.226 (6)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.522 (9)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.493 (7)		
		$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)$	110.4 (3)
$\mathrm{S}-\mathrm{Co}-\mathrm{O}(1)$	85.8 (1)	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(9)$	106.4 (3)
$\mathrm{S}-\mathrm{Co}-\mathrm{N}(1)$	174.9 (1)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$	111.1 (4)
$\mathrm{S}-\mathrm{Co}-\mathrm{N}(2)$	97.7 (1)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(9)$	110.3 (4)
$\mathrm{S}-\mathrm{Co}-\mathrm{N}(3)$	95.6 (1)	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(9)$	112.4 (4)
$\mathrm{S}-\mathrm{Co}-\mathrm{N}(4)$	89.8 (1)	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(6)$	110.5 (4)
$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(1)$	91.2 (2)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(8)$	109.1 (4)
$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(2)$	86.9 (2)	$\mathrm{Co}-\mathrm{N}(4)-\mathrm{C}(10)$	111.6 (3)
$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(3)$	178.5 (2)	S-C(2)-C(1)	111.7 (4)
$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(4)$	87.1 (2)	$\mathrm{S}-\mathrm{C}(2)-\mathrm{C}(3)$	109.1 (3)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	86.2 (2)	C(1)-C(2)-C(3)	115.6 (5)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	87.4 (2)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{O}(2)$	123.1 (4)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(4)$	86.0 (2)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	117.7 (4)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(3)$	93.4 (2)	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	118.9 (4)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(4)$	170.1 (2)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	108.6 (5)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$	92.4 (2)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	108.6 (5)
$\mathrm{Co}-\mathrm{S}-\mathrm{C}(2)$	96.3 (2)	$N(1)-C(7)-C(8)$	110.2 (5)
$\mathrm{Co}-\mathrm{S}-\mathrm{C}(4)$	111.8 (2)	$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	108.7 (5)
C(2)-S-C (4)	101.3 (3)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	107.7 (5)
$\mathrm{Co}-\mathrm{O}(1)-\mathrm{C}(3)$	123.1 (3)	$\mathrm{N}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	107.6 (4)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(5)$	106.0 (3)		

References

Elder, R. C., Kennard, G. J., Payne, M. D. \& Deutsch, E. (1978). Inorg. Chem. 17, 1296-1303.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-5 10.

Isago, T., Окamoto, K., Ohmasa, M. \& Hidaka, J. (1980). Chem. Lett. pp. 319-322.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

Kojima, M. \& Fujita, J. (1983). Bull. Chem. Soc. Jpn, 56, 2958-2964.
Mitsui, Y., Watanabe, J., Harada, Y., Sakamaki, T. \& Iitaka, Y. (1976). J Chem. Soc. Dalton Trans. pp. 2095-2102.

Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.

Acta Cryst. (1984). C40, 401-403

The Structure of Dicarbonyl $\left(\eta^{3}\right.$-cyclopentadienyl) (η^{3}-2-methylallyl)molybdenum(II), $\left[\mathrm{Mo}\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$

By Nicholas W. Murrall and Alan J. Welch
Dewar Crystallographic Laboratory, Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland

(Received 27 September 1983; accepted 16 November 1983)

Abstract

M_{r}=272 \cdot 2\), monoclinic, $\quad P 2_{1} / n, \quad a=$ 6.1105 (9), $b=12.7885$ (22), $c=13.7247$ (24) $\AA, \quad \beta$ $=98.787(13)^{\circ}, U=1059.91 \AA^{3}, D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=4, \quad F(000)=544 \mathrm{e}, \bar{\lambda}(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=$ $1.083 \mathrm{~mm}^{-1}, T=188 \mathrm{~K} . R=0.025$ for 2867 unique reflections. The molecule crystallizes with the η^{3} -2-methylallyl ligand in the endo conformation, and the three Mo-C(allyl) distances are equal within experimental error, average 2.3163 (13) \AA.

Introduction. There is currently considerable theoretical and experimental interest in the structural preferences of complexes containing the η^{3}-allyl or a substituted η^{3}-allyl ligand. Detailed NMR studies (Faller, Chen, Mattina \& Jakubowski, 1973) had previously established that whilst both exo and endo (Schilling, Hoffmann \& Faller, 1979) conformations of [$\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(2-R-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4}\right)(\mathrm{CO})_{2} \mathrm{Mo}$ ($R=\mathrm{H}, \mathrm{Me}$) are present (and rapidly interconvert) in solution, the major isomer is exo for $R=\mathrm{H}$ and endo for $R=\mathrm{Me}$. It is, furthermore, exo-[$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}\right]$ (I) that crystallizes (Faller, Chodosh \& Katahira, 1980). To establish if a similar correspondence exists between major solution isomer and that observed in the solid state when $R=\mathrm{Me}$, we have determined the crystal structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(2-\mathrm{Me}-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4}\right)(\mathrm{CO})_{2} \mathrm{Mo}\right]$ (II).

Experimental. Yellow crystals, prepared according to the literature (Faller, Chen, Mattina \& Jakubowski, 1973), $0.05 \times 0.04 \times 0.03 \mathrm{~cm}$, from diethyl ether $/ n-$ heptane (1:1) by slow evaporation, mounted in Lindemann tube under N_{2}; preliminary unit cell and space group from oscillation and Weissenberg photography $[\lambda(\operatorname{Cu} K \alpha)=1.54178 \AA], h 0 l \quad h+l=2 n+1$ and $0 k 0$
$k=2 n+1$ absent; CAD-4 diffractometer, 188 K (ULT1 apparatus), 25 reflections ($17^{\circ}<\theta<18^{\circ}$) centred, graphite-monochromated Mo $K \alpha$ radiation; for data collection $\theta_{\max }=30^{\circ}, \omega-2 \theta$ scans in 96 steps, ω scan width $0.8^{\circ}+0.35^{\circ} \tan \theta$, rapid prescan after which reflections with $I \geq 0.5 \sigma(I)$ remeasured such that final net intensity had $I>33 \sigma(I)$ subject to a maximum measuring time of 90 s ; two quadrants measured ($h k \pm l$ and $-h-k \pm l$) over 115 X -ray hours with no detectable decay or movement; data not corrected for absorption, observed structure factors determined and merged to give 3083 unique reflections, $R_{\text {merg }}=0.0218$; for structure solution and refinement 2867 amplitudes for which $F \geq 2 \sigma(F)$, Patterson synthesis (Mo), full-matrix least squares (on F) (Sheldrick, 1976), $w=\left[\sigma^{2}(F)+\right.$ $\left.0.004524(F)^{2}\right]^{-1}$, anisotropic thermal parameters for all non-H atoms, $U_{\mathrm{H}}{ }^{*}$ set at $0.04 \AA^{2}, R=0.0250$, $w R=0.0469$, data: variable ratio $17: 1,(\Delta / \sigma)_{\text {max }}$ in final cycle $<0 \cdot 3$, max. peak and min. trough in final ΔF synthesis 0.41 and $-1.08 \mathrm{e} \AA^{-3}$ respectively, neutral scattering factors for C, O, Mo (Cromer \& Liberman, 1970) and H (Stewart, Davidson \& Simpson, 1965), computer programs SHELX76 (Sheldrick, 1976), XANADU (Roberts \& Sheldrick, 1976), XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976), and ORTEPII (Johnson, 1976) \dagger

[^3]
[^0]: $0.70926 \AA, \quad \mu=1.31 \mathrm{~mm}^{-1}, \quad F(000)=1080, \quad T=$ 297 (2) K, final R is 0.042 for 2310 observed unique reflections. The Co atom is surrounded octahedrally by four N atoms of $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ (tren) and S and O
 © 1984 International Union of Crystallography

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, atomic parameters for H atoms and bond lengths and bond angles involving H atoms and those in the perchlorate ions have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39020 (26 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * See deposition footnote.

[^3]: * The isotropic temperature factor is defined as $\exp \left[-8 \pi^{2} U \times\right.$ $\left.\left(\sin ^{2} \theta\right) / \lambda^{2}\right]$.
 \dagger Lists of structure factors, H -atom coordinates, Tables 3 and 4, and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39027 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

